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Background

Latent Semantic Indexing (LSI): Let a column vector xi represent a
document. Given a term-document matrix X = [x1, . . . , xn] and a
query vector q, the relevance scores of the documents to the query are
computed (up to normalizations) as the row vector

qTXk,

where Xk is the best rank-k approximation of X.

Limitations: When the document collection (X) becomes large, the
computation of Xk is very expensive, both in time and in memory. Let
X have size m × n with nnz nonzeros, the most efficient implemen-
tation of truncated SVD takes

• time: O(k′(nnz + min(m,n)) + Tt),

• space: O(nnz + k′min(m,n) + Ts),

where k′ is the number of Lanczos steps (typically a few times of k), and
Tt (Ts) is the time (space) cost of eigendecompositions of tridiagonal
matrices and convergence tests.

Our Approach

Two combined schemes to reduce the above costs:

• Partition the term-document matrix, and

• Perform a relevance analysis (similar to LSI) for each partition, or
for only a few ones.

Benefits:

1. The partitioning step is simple and very inexpensive.

2. The relevance analysis yields similar results to LSI, but it can be an
order of magnitude faster.

3. Each analysis deals with only a small portion of the matrix, hence
the whole process is highly parallelizable.

4. Instead of a complicated parallel SVD for large scale LSI, our ap-
proach is conceptually much simpler and easier to implement.
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Row partitioning (for wide matrix)

Column-Partitioning(X)

1. Compute the centroid c of the documents.

2. Compute the largest right singular vector v of
the column-centered matrix X̄ = X − c1T .

3. Form X+← {xi | vi ≥ margin−}
and X−← {xi | vi < margin+}.

4. If |X+| > set.size.threshold,
Column-Partitioning(X+).

5. If |X−| > set.size.threshold,
Column-Partitioning(X−).

Row-Partitioning(X)

1. Compute the centroid c′ of the terms.

2. Compute the largest left singular vector u of
the row-centered matrix X̄ ′ = X − 1c′.

3. Form X+← {X(i, :) | ui ≥ margin−}
and X−← {X(i, :) | ui < margin+}.

4. If |X+| > set.size.threshold,
Row-Partitioning(X+).

5. If |X−| > set.size.threshold,
Row-Partitioning(X−).

Query Strategies

For tall matrix X:

1. Partition the columns of X. A binary tree structure is
formed. (See figure on the panel to the left.)

2. For a given query q, compute relevance scores between
q and those documents in the leaves of the tree. (See
explanation on the panel to the right.)

3. Since a document xi may belong to different partitions,
the relevance score for xi is the maximum of all the
scores computed for xi in step 2.

For wide matrix X:

1. Partition the rows of X. A binary tree structure is
formed. (See figure on the panel to the left.) Denote
the resulting leaf nodes X(1), X(2), . . .X(p).

2. Partition the query q in the same way.

3. Compute s′ =
∑p

i=1 qT
(i)

Q̃
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k

Q̃
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k

X(i). (See explana-

tion on the panel to the right.)

4. Scale each entry of s′ by the norm of the corresponding
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Relevance Analysis

How to analyze the relevances between q and X (or a portion of
X)?

• In LSI, the relevance scores are computed as the vector qTXk,
modified by scaling each entry with the norm of the corre-
sponding column of Xk.

• Let the SVD of X be UΣV T , then qTXk = qT (XVkV
T
k )

and qTXk = qT (UkU
T
k X).

• Instead, for tall matrix X, we propose computing the vector
qT (XQkQ

T
k ) and scaling each entry with the norm of the

corresponding column of XQkQ
T
k , and for wide matrix X,

compute the vector qT (Q̃kQ̃
T
k X) and scale each entry with

the norm of the corresponding column of Q̃kQ̃
T
k X.

• Here, the columns of Qk (and Q̃k) are the Lanczos vectors for
the matrix XTX (and XXT ). The major advantage is that
they are much less expensive to compute than Vk (and Uk)!

How good is using Lanczos vectors instead of singular vectors?
For any j < k,

[

(qTX)− (qTXQkQ
T
k )

]

uj ≤ cjT
−1
k−j

(1 + 2γj),
[

(qTX)− (qT Q̃kQ̃
T
k X)

]

uj ≤ c̃jT
−1
k−j

(1 + 2γj),

where cj and c̃j are some positive constants, γj is the eigengap

between the j-th and the (j + 1)-th eigenvalues of XTX, and
Tℓ(x) is the Chebyshev polynomial of the first kind of degree ℓ.
Fixing x, Tℓ can be viewed as an exponential function of ℓ:

Tℓ(x) ≈ 1
2(exp(arccosh(x)))ℓ.

Computational costs:

Singular vectors Lanczos vectors

Time k′(nnz + min(m,n)) + Tt k(nnz + min(m,n))

Space nnz + k′min(m,n) + Ts nnz + k min(m,n)

In practice, computing the Lanczos vectors can be an order of
magnitude faster than computing the singular vectors.

Results
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sorted queries

Eigenvalue distribution of the matrix XTX.
Note the big eigengaps.

The value of
[

(qTX)− (qTXQkQ
T
k )

]

uj for

different j (fixing k = 300).
Average query precision for different k. Precision recall for k = 200. Time cost: our approach v.s. LSI (in seconds).

Percentage of relevant documents that are in the
partition where a certain query belongs.
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